# **Tradies Choice Master Grip Lite SAS Australasia (Specialty Adhesives Systems)** Part Number: Not Available Version No: 1.3 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements Issue Date: **31/01/2025**Print Date: **31/01/2025** L.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # **Product Identifier** | Product name | Tradies Choice Master Grip Lite | |-------------------------------|---------------------------------| | Synonyms | Tile adhesive | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Lightweight cementitious tile adhesive. | |--------------------------|-----------------------------------------| |--------------------------|-----------------------------------------| # Details of the manufacturer or supplier of the safety data sheet | Registered company name | SAS Australasia (Specialty Adhesives Systems) | | |-------------------------|-------------------------------------------------------|--| | Address | Unit A2/152 Miller Rd Chester Hill NSW 2162 Australia | | | Telephone | 1300 202 894 (Mon-Fri, 9am-5pm) | | | Fax | Not Available | | | Website | https://sas-aa.com.au/ | | | Email | nail techdept@sas-aa.com.au | | # **Emergency telephone number** | Association / Organisation | SAS Australasia (Specialty Adhesives Systems) | | |-------------------------------------|-----------------------------------------------|--| | Emergency telephone number(s) | 1300 202 894 (Mon-Fri, 9am-5pm) | | | Other emergency telephone number(s) | Not Available | | # **SECTION 2 Hazards identification** # Classification of the substance or mixture HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Classification [1] | Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2 | | Legend: | 1. Classification by vendor; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -<br>Annex VI | # Label elements Hazard pictogram(s) Page 2 of 18 Part Number: Not Available Version No: 1.3 # **Tradies Choice Master Grip Lite** Issue Date: **31/01/2025**Print Date: **31/01/2025** | Signal word | Danger | |-------------|--------| |-------------|--------| # Hazard statement(s) | H315 | Causes skin irritation. | | |------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | H317 | H317 May cause an allergic skin reaction. H318 Causes serious eye damage. H335 May cause respiratory irritation. H341 Suspected of causing genetic defects. | | | H318 | | | | H335 | | | | H341 | | | | H373 | May cause damage to organs through prolonged or repeated exposure. | | # Supplementary statement(s) Not Applicable # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | |------|----------------------------------------------------------------------------------|--| | P260 | Do not breathe dust/fume. | | | P271 | Use only outdoors or in a well-ventilated area. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | P272 | P272 Contaminated work clothing should not be allowed out of the workplace. | | # Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|----------------------------------------------------------------------------------------------------------------------------------|--| | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | # Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|------------------------------------------------------------------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | # Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |------|----------------------------------------------------------------------------------------------------------------------------------| | | | # **SECTION 3 Composition / information on ingredients** # Substances See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | |-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------| | 65997-15-1 | 30-60 | portland cement | | 14808-60-7. | 10-<30 | graded sand | | 471-34-1 | 10-<30 | calcium carbonate | | 544-17-2 | <10 | calcium formate | | Legend: | Classification by vendor; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | # **SECTION 4 First aid measures** # Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: Part Number: Not Available Page 3 of 18 Issue Date: 31/01/2025 Version No: 1.3 Print Date: 31/01/2025 #### **Tradies Choice Master Grip Lite** | | <ul> <li>Wash out immediately with fresh running water.</li> <li>Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.</li> <li>Seek medical attention without delay; if pain persists or recurs seek medical attention.</li> <li>Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.</li> </ul> | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | <ul> <li>If fumes, aerosols or combustion products are inhaled remove from contaminated area.</li> <li>Other measures are usually unnecessary.</li> </ul> | | Ingestion | <ul> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Seek medical advice.</li> </ul> | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to iron and its derivatives: - · Always treat symptoms rather than history. - In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg. - Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin. - Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur. - Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension. - Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination. - Activated charcoal does not effectively bind iron. - · Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea. - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to dichromates and chromates: - Absorption occurs from the alimentary tract and lungs. - The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days. - ▶ Establish airway, breathing and circulation. Assist ventilation. - Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present. - Otherwise use gastric lavage with endotracheal intubation. - Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited. - ▶ British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective. - ▶ There are no antidotes. - Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop. The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/ protein complexes is thus avoided. [ILO Encyclopedia] [Ellenhorn and Barceloux: Medical Toxicology] - Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur. - > Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive. - Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml. - Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short-term repeated exposures to highly alkaline materials: - ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxvgen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. #### INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - Neutralising agents should never be given since exothermic heat reaction may compound injury. - \* Catharsis and emesis are absolutely contra-indicated. - \* Activated charcoal does not absorb alkali. - \* Gastric lavage should not be used. Supportive care involves the following: Withhold oral feedings initially. Part Number: Not Available Page 4 of 18 Issue Date: 31/01/2025 Print Date: 31/01/2025 Version No. 1.3 **Tradies Choice Master Grip Lite** - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). #### SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] # **SECTION 5 Firefighting measures** #### Extinguishing media - There is no restriction on the type of extinguisher which may be used. - · Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Advice for firefighters | | | Fire Fighting | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear breathing apparatus plus protective gloves in the event of a fire.</li> <li>Prevent, by any means available, spillage from entering drains or water courses.</li> <li>Use fire fighting procedures suitable for surrounding area.</li> <li>DO NOT approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> </ul> | | | ▶ Equipment should be thoroughly decontaminated after use. | # Fire/Explosion Hazard Under certain conditions the material may become combustible because of the ease of ignition which occurs after the material reaches a high specific area ratio (thin sections, fine particles, or molten states). However, the same material in massive solid form is comparatively difficult to ignite. Nearly all metals will burn in air under certain conditions. Some are oxidised rapidly in the presence of air or moisture, generating sufficient heat to reach their ignition temperatures. Others oxidise so slowly that heat generated during oxidation is dissipated before the metal becomes hot enough to ignite. Particle size, shape, quantity, and alloy are important factors to be considered when evaluating metal combustibility. Combustibility of metallic alloys may differ and vary widely from the combustibility characteristics of the alloys' constituent elements Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. **HAZCHEM** Not Applicable # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures Increase ventilation. Stop leak if safe to do so. See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | <ul> <li>Clean up waste regularly and abnormal spills immediately.</li> <li>Avoid breathing dust and contact with skin and eyes.</li> <li>Wear protective clothing, gloves, safety glasses and dust respirator.</li> <li>Use dry clean up procedures and avoid generating dust.</li> <li>Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (H-Class HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). H-Class HEPA filtered industrial vacuum cleaners should NOT be used on wet materials or surfaces.</li> <li>Dampen with water to prevent dusting before sweeping.</li> <li>Place in suitable containers for disposal.</li> </ul> | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Major Spills | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by all means available, spillage from entering drains or water courses.</li> <li>Consider evacuation (or protect in place).</li> <li>No smoking, naked lights or ignition sources.</li> </ul> | Water spray or fog may be used to disperse / absorb vapour. Contain or absorb spill with sand, earth or vermiculite. Part Number: Not Available Page 5 of 18 Issue Date: 31/01/2025 Version No: 1.3 Print Date: 31/01/2025 #### **Tradies Choice Master Grip Lite** - Collect recoverable product into labelled containers for recycling. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Other information Safe handling - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. # Conditions for safe storage, including any incompatibilities #### Suitable container - Polyethylene or polypropylene container. - ► Check all containers are clearly labelled and free from leaks. # Storage incompatibility Derivative of electropositive metal. For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorine trifluoride may react violently and ignite. - -May initiate explosive polymerisation of olefin oxides including ethylene oxide. - -Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals. - -Produces exothermic reaction with oxygen difluoride. - -May form explosive mixture with oxygen difluoride. - -Forms explosive mixtures with sodium nitrate. - -Reacts vigorously with vinyl acetate. Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. Calcium carbonate: is incompatible with acids, ammonium salts, fluorine, germanium, lead diacetate, magnesium, mercurous chloride, silicon, silver nitrate, titanium. Contact with acid generates carbon dioxide gas, which may pressurise and then rupture closed containers Calcium oxide: - ▶ reacts violently with water, evolving high quantities of heat - reacts violently, with possible ignition or explosion, with acids, anilinium perchlorate, bromine pentafluoride, chlorine trifluoride, fluorine, hydrogen fluoride, hydrogen sulfide, hydrogen trisulfide, isopropyl isocyanide dichloride, light metals, lithium, magnesium, powdered aluminium, phosphorus, potassium, sulfur trioxide - ▶ increase the explosive sensitivity of azides, nitroalkanes (e.g. nitroethane, nitromethane, 1-nitropropane etc.) - is incompatible with boric acid, boron trifluoride, carbon dioxide, ethanol, halogens (such as fluorine), metal halides, phosphorus pentoxide, selenium oxychloride, sulfur dioxide and many organic materials #### Calcium sulfate: - reacts violently with reducing agents, acrolein, alcohols, chlorine trifluoride, diazomethane, ethers, fluorine, hydrazine, hydrazinium perchlorate, hydrogen peroxide, finely divided aluminium or magnesium, peroxyfuroic acid, red phosphorus, sodium acetylide - sensitises most organic azides which are unstable shock- and heat- sensitive explosives - ► may form explosive materials with 1,3-di(5-tetrazolyl)triazene Part Number: Not Available Page 6 of 18 Issue Date: 31/01/2025 Version No: 1.3 Print Date: 31/01/2025 #### **Tradies Choice Master Grip Lite** - is incompatible with glycidol, isopropyl chlorocarbonate, nitrosyl perchlorate, sodium borohydride - is hygroscopic; reacts with water to form gypsum and Plaster of Paris For iron oxide (ferric oxide): - Avoid storage with aluminium, calcium hypochlorite and ethylene oxide. - Risk of explosion occurs following reaction with powdered aluminium, calcium silicide, ethylene oxide (polymerises), carbon monoxide, magnesium and perchlorates. - Risk of ignition or formation of flammable gases or vapours occurs following reaction with carbides, for example caesium carbide, (produces heat), hydrogen sulfide, hydrogen peroxide (decomposes). - An intimately powered mixture with aluminium, usually ignited by magnesium ribbon, reacts with an intense exotherm to produce molten iron in the commercial "thermit" welding process - WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. - ▶ The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid reaction with borohydrides or cyanoborohydrides - ▶ Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. - These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. - The state of subdivision may affect the results. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. - X Must not be stored together - May be stored together with specific preventions - May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. # **SECTION 8 Exposure controls / personal protection** #### **Control parameters** # Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|----------------------|---------------------------------------------------|---------------|------------------|------------------|------------------------------------------------------------------------------------------| | Australia Exposure<br>Standards | portland<br>cement | Portland cement | 10<br>mg/m3 | Not<br>Available | Not<br>Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure<br>Standards | graded sand | Quartz (respirable dust) | 0.05<br>mg/m3 | Not<br>Available | Not<br>Available | Not Available | | Australia Exposure<br>Standards | graded sand | Silica - Crystalline:<br>Quartz (respirable dust) | 0.05<br>mg/m3 | Not<br>Available | Not<br>Available | Not Available | | Australia Exposure<br>Standards | calcium<br>carbonate | Calcium carbonate | 10<br>mg/m3 | Not<br>Available | Not<br>Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Ingredient | Original IDLH | Revised IDLH | |-------------------|---------------------|---------------| | portland cement | 5,000 mg/m3 | Not Available | | graded sand | 25 mg/m3 / 50 mg/m3 | Not Available | | calcium carbonate | Not Available | Not Available | | calcium formate | Not Available | Not Available | ### MATERIAL DATA for chrome(VI) containing substances: Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium. Such surveillance should emphasise - demography, occupational and medical history and health advice - · physical examination with emphasis on the respiratory system and skin - weekly skin inspection of hands and forearms by a "responsible person" An induction threshold for chromium (VI) allergy is difficult to define, but from experience in the construction industry and among cement workers it is well known that levels of 10-20 mg/kg soluble chromium (VI) in the cement has caused sensitisation with a prevalence of about 4-5% of the exposed population. Minimum elicitation thresholds (MET10%) which will elicit an allergic response in 10% of already sensitised individuals are found to be in the range of 0.02 to 0.9 ug/cm2/ 2 days in different studies (Annex XV Report - Proposal for a restriction: Chromium (VI) compounds - Jan 2012) https://echa.europa.eu/documents/10162/4d88d444-4b8b-48ab-9c11-6e74819e047c for calcium silicate: Page 7 of 18 Issue Date: 31/01/2025 Part Number: Not Available Version No. 1.3 Print Date: 31/01/2025 **Tradies Choice Master Grip Lite** containing no asbestos and <1% crystalline silica ES TWA: 10 mg/m3 inspirable dus TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4 Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3 are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth. NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans The TLV-TWA is thought to be protective against the significant risk of physical irritation associated with exposure. The recommended TLV is thought to reduce the likelihood of respiratory irritation and skin irritation from exposure to aerosols and mists of soluble iron salts. For aluminium oxide: The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control. [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e., generally less than 5 um. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. #### ▶ Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. - ▶ Work should be undertaken in an isolated system such as a "glove-box" . Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. - ▶ Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. - Open-vessel systems are prohibited. - ▶ Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. - ▶ Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local - For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - ▶ Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). - ▶ Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. - Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. # Individual protection measures, such as personal protective equipment Appropriate engineering controls # Eye and face protection - · Safety glasses with side shields - Chemical goggles. - ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below ### Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Page 8 of 18 Part Number: Not Available Issue Date: 31/01/2025 Version No. 1.3 #### **Tradies Choice Master Grip Lite** Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material. - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ▶ Neoprene rubber gloves Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - nitrile rubber. - ▶ butyl rubber. - fluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. # **Body protection** See Other protection below Other protection - ▶ Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] - ▶ Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] - ▶ Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. - Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. - ▶ Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eve wash unit. # Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1<br>Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | Print Date: 31/01/2025 Page 9 of 18 Part Number: Not Available Version No. 1.3 #### **Tradies Choice Master Grip Lite** Issue Date: 31/01/2025 Print Date: 31/01/2025 \* - Negative pressure demand \*\* - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data. and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - · Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required. Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates. Filtration rate: Filters at least 99.95% of airborne particles Suitable for: - · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing. - · Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke. - · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS - · Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating. # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | White | | | |---------------------------------------------------|---------------|-----------------------------------------------------------|----------------| | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-<br>octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition<br>Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition<br>Deflagration Density<br>(g/m3) | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Chemical stability | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> | Page 10 of 18 Part Number: **Not Available**Version No: **1.3** # **Tradies Choice Master Grip Lite** Issue Date: **31/01/2025**Print Date: **31/01/2025** | Possibility of hazardous reactions | See section 7 | |------------------------------------|---------------| | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** | SECTION 11 Toxicologica | al information | | | |-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | nformation on toxicologic | al effects | | | | a) Acute Toxicity | Based on available data, the classification criteria are not met. | | | | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | | | c) Serious Eye<br>Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | | | d) Respiratory or Skin<br>sensitisation | There is sufficient evidence to classify this material as sensitising to skin or the respiratory system | | | | e) Mutagenicity | There is sufficient evidence to classify this material as mutagenic | | | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | | | g) Reproductivity | Based on available data, the classification criteria are not met. | | | | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | | | i) STOT - Repeated<br>Exposure | There is sufficient evidence to classify this material as toxic to specific organs through repeated exposure | | | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | | | | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation may result in chrome ulcers or sores of nasal mucosa and lung damage. | | | | Inhaled | Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function. | | | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Chromate salts are corrosive because of their oxidising potency and produce tissue injury similar to acid burns. Ingestion may produce violent gastroenteritis, severe circulatory collapse and toxic nephritis. Peripheral vascular shock may also ensue. | | | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances. Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | Eye | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. | | | | Chronic | On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production. Very fine Al2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure. | | | Part Number: Not Available Page 11 of 18 Issue Date: 31/01/2025 Print Date: 31/01/2025 Version No. 1.3 #### **Tradies Choice Master Grip Lite** When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C. The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity. Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction. There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than In a small cohort mortality study of workers in a wollastonite guarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter. In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively. no intra-abdominal tumours were found. Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity. Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996 Pure calcium carbonate does not produce pneumoconiosis probably being eliminated from the lungs slowly by solution. As mined, unsterilised particulates can carry bacteria into the air passages and lungs, producing infection and bronchitis. High blood concentrations of calcium ion may give rise to vasodilation and depress cardiac function leading to hypotension and syncope. Calcium ions enhance the effects of digitalis on the heart and may precipitate digitalis intoxication. Calcium salts also reduce the absorption of tetracyclines In neonates calcification of soft-tissue has been observed following therapeutic administration. Some studies show that large quantities of calcium intake can cause hypercalcemia, which can in turn lead to renal failure Renal failure can occur within hours or days or, alternatively, settles gradually, evolving over several years until it reaches terminal stages. Similarly, acute renal failure can also develop into chronic forms of the disease. Hypercalcaemia conditions can be associated with normal or reduced calcium serum levels, as the body tends to maintain a balanced metabolism of the mineral, known as the compensation phase. When there is a slight increase in the concentration of ions in the blood, calcium excretion markedly increases, while intestinal absorption decreases After kidney damage has set in, a loss of calcium may occur, thereby decreasing the serum concentration. Serum protein levels may decrease as a result of proteinuria in cases of renal complications. Proteinuria is an indicator of kidney disease and represents an independent risk factor for the progression of such a condition. Increased serum creatinine levels may represent an important parameter, given that kidney diseases are associated with increased serum creatinine levels. When renal pathology occurs, a progressive loss of glomerular filtration begins, resulting in increased plasma creatinine concentrations. During the course of kidney failure, discrete, but constant, increments in plasma creatinine levels occur. Renal disease with albuminuria may also be the cause of hypoalbuminemia in patients with liver disease. In cases of established liver damage, increased calcium urinary excretion may occur. Therefore, a similar increase may cause the decline in serum calcium levels in the current study. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung. irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are Part Number: Not Available Page 12 of 18 Issue Date: 31/01/2025 Print Date: 31/01/2025 Version No. 1.3 #### **Tradies Choice Master Grip Lite** present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phleam, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed. Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible. Chronic excessive iron exposure has been associated with haemosiderosis and consequent possible damage to the liver and pancreas. Haemosiderin is a golden-brown insoluble protein produced by phagocytic digestion of haematin (an iron-based pigment). Haemosiderin is found in most tissues, especially in the liver, in the form of granules. Other sites of haemosiderin deposition include the pancreas and skin. A related condition, haemochromatosis, which involves a disorder of metabolism of these deposits, may produce cirrhosis of the liver, diabetes, and bronze pigmentation of the skin - heart failure may eventually occur Such exposure may also produce conjunctivitis, choroiditis, retinitis (both inflammatory conditions involving the eye) and siderosis of tissues if iron remains in these tissues. Siderosis is a form of pneumoconiosis produced by iron dusts. Siderosis also includes discoloration of organs, excess circulating iron and degeneration of the retina, lens and uvea as a result of the deposition of intraocular iron. Siderosis might also involve the lungs - involvement rarely develops before ten years of regular exposure. Often there is an accompanying inflammatory reaction of the bronchi. Permanent scarring of the lungs does not High levels of iron may raise the risk of cancer. This concern stems from the theory that iron causes oxidative damage to tissues and organs by generating highly reactive chemicals, called free radicals, which subsequently react with DNA. Cells may be disrupted and may be become cancerous. People whose genetic disposition prevents them from keeping tight control over iron (e.g. those with the inherited disorder, haemochromatosis) may be at increased risk. Iron overload in men may lead to diabetes, arthritis, liver cancer, heart irregularities and problems with other organs as iron builds up. [K. Schmidt, New Scientist, No. 1919 pp.11-12, 2nd April, 1994] Chromium(III) is considered an essential trace nutrient serving as a component of the "glucose tolerance factor" and a cofactor for insulin action. High concentrations of chromium are also found in RNA. Trivalent chromium is the most common form found in Chronic inhalation of trivalent chromium compounds produces irritation of the bronchus and lungs, dystrophic changes to the liver and kidney, pulmonary oedema, and adverse effects on macrophages. Intratracheal administration of chromium(III) oxide, in rats, increased the incidence of sarcomas, and tumors and reticulum cell sarcomas of the lung. There is inadequate evidence of carcinogenicity of chromium(III) compounds in experimental animals and humans (IARC). Chronic exposure to hexavalent chromium compounds reportedly produces skin, eye and respiratory tract irritation, yellowing of the eyes and skin, allergic skin and respiratory reactions, diminished sense of smell and taste, blood disorders, liver and kidney damage, digestive disorders and lung damage. There is sufficient evidence of carcinogenicity of chromium(VI) compounds in experimental animals and humans to confirm these as Class 1 carcinogens Exposure to chromium during chrome production and in the chrome pigment industry is associated with cancer of the respiratory tract. A slight increase in gastrointestinal cancer following exposure to chromium compounds has also been reported. The greatest risk is attributed to exposure to acid-soluble, water-insoluble hexavalent chromium which occurs in roasting and refining processes. Animal studies support the idea that the most potent carcinogenic compounds are the slightly soluble hexavalent compounds. The cells are more active in the uptake of the hexavalent forms compared to trivalent forms and this may explain the difference in occupational effect. It is the trivalent form, however, which is metabolically active and binds with nucleic acid within the cell suggesting that chromium mutagenesis first requires biotransformation of the hexavalent form by reduction. Hexavalent chromes produce chronic ulceration of skin surfaces (quite independent of other hypersensitivity reactions exhibited by the skin). Water-soluble chromium(VI) compounds come close to the top of any published "hit list" of contact allergens (eczematogens) producing positive results in 4 to 10% of tested individuals. On the other hand only chromium(III) compounds can bind to high molecular weight carriers such as proteins to form a complete allergen (such as a hapten). Chromium(VI) compounds cannot. It is assumed that reduction must take place for such compounds to manifest any contact sensitivity. The apparent contradiction that chromium(VI) salts cause allergies to chromium(III) compounds but that allergy to chromium(III) compounds is difficult to demonstrate is accounted for by the different solubilities and skin penetration of these compounds. Water-soluble chromium(VI) salts penetrate the horny layer of the skin more readily than chromium(III) compounds which are bound by cross-linking in the horny layer ("tanning", as for leather) and therefore do not reach the cells involved in antigen processing. | TC Master Grip Lite | TOXICITY | IRRITATION | |---------------------|-------------------------------------------------|-----------------------------------------------------------------| | | Not Available | Not Available | | n autlan d assessed | TOXICITY | IRRITATION | | portland cement | Not Available | Not Available | | | TOXICITY | IRRITATION | | graded sand | Oral (Rat) LD50: 500 mg/kg <sup>[2]</sup> | Not Available | | calcium carbonate | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup> | Eye (Rodent - rabbit): 750ug/24H - Severe | | | Inhalation (Rat) LC50: >3 mg/l4h <sup>[1]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> | | | Oral (Rat) LD50: >2000 mg/kg <sup>[1]</sup> | Skin (Rodent - rabbit): 500mg/24H - Moderate | | | | · | Part Number: Not Available Issue Date: 31/01/2025 Page 13 of 18 Version No: 1.3 Print Date: 31/01/2025 # **Tradies Choice Master Grip Lite** | | | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> | | |-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--| | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup> | Eye (Rodent - rabbit): 100mg/24H - Moderate | | | calcium formate | Inhalation (Rat) LC50: >0.67 mg/l4h <sup>[1]</sup> | Eye: adverse effect observed (irritating) <sup>[1]</sup> | | | | Oral (Mouse) LD50; 1920 mg/kg <sup>[2]</sup> | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | | | | | | PORTLAND CEMENT | The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. | | | | CALCIUM CARBONATE | No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | | | | CALCIUM FORMATE | The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. | | | | PORTLAND CEMENT & CALCIUM CARBONATE & CALCIUM FORMATE | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | | | PORTLAND CEMENT & **GRADED SAND** No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | * | Reproductivity | × | | Serious Eye<br>Damage/Irritation | <b>~</b> | STOT - Single Exposure | <b>~</b> | | Respiratory or Skin sensitisation | <b>~</b> | STOT - Repeated Exposure | <b>~</b> | | Mutagenicity | ✓ | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** # **Toxicity** | TC Master Grip Lite | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------|------------------|--------------------|---------------|------------------|------------------| | | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | portland cement | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | graded sand | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | Page 14 of 18 Part Number: Not Available Version No: 1.3 #### **Tradies Choice Master Grip Lite** Issue Date: 31/01/2025 Print Date: 31/01/2025 | | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------|-------------|--------------| | | EC50 | 72h | Algae or other aquatic plants | >14mg/l | 2 | | calcium carbonate | NOEC(ECx) | 1h | Fish | 4-320mg/l | 4 | | | LC50 | 96h | Fish | >165200mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | calcium formate | EC50 | 96h | Algae or other aquatic plants | 584000mg/L | 2 | | | EC50 | 72h | Algae or other aquatic plants | 570mg/l | 2 | | | EC50 | 48h | Crustacea | >1000mg/l | 2 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | 63mg/l | 2 | | | ErC50 | 72h | Algae or other aquatic plants | 570mg/l | 2 | | | LC50 | 96h | Fish | >=1000mg/l | 1 | | Legend: | 4. US EPA, Eco | · · | e ECHA Registered Substances - Ecotoxicolog<br>ata 5. ECETOC Aquatic Hazard Assessment Depta 8. Vendor Data | • | ntic Toxicit | #### For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. Chromium in the oxidation state +3 (the trivalent form) is poorly absorbed by cells found in microorganisms, plants and animals. Chromate anions (CrO4-, oxidation state +6, the hexavalent form) are readily transported into cells and toxicity is closely linked to the higher oxidation state. Chromium Ecotoxicology: Toxicity in Aquatic Organisms: Chromium is harmful to aquatic organisms in very low concentrations. Fish food organisms are very sensitive to low levels of chromium. Chromium is toxic to fish although less so in warm water. Marked decreases in toxicity are found with increasing pH or water hardness; changes in salinity have little if any effect. Chromium appears to make fish more susceptible to infection. High concentrations can damage and/or accumulate in various fish tissues and in invertebrates such as snails and worms. Reproduction of Daphnia is affected by exposure to 0.01 mg/kg hexavalent chromium/litre Toxicity of chromium in fresh-water organisms (50% mortality)\* | Compound | Category | Exposure | Toxicity Range (mg/litre) | Most sensitive species | |-------------------|--------------|-----------|---------------------------|------------------------| | hexavalent chrome | invertebrate | acute | 0.067-59.9 | scud | | | | long-term | - | - | | | vertebrate | acute | 17.6-249 | fathead minnow | | | | long-term | 0.265-2.0 | rainbow trout | | trivalent chrome | invertebrate | acute | 2.0-64.0 | cladoceran | | | | long-term | 0.066 | cladoceran | | | vertebrate | acute | 33.0-71.9 | guppy | | | invertebrate | long-term | 1.0 | fathead minnow | | | | | | | <sup>\*</sup> from Environmental Health Criteria 61: WHO Publication. # Toxicity in Microorganisms: In general, toxicity for most microorganisms occurs in the range of 0.05-5 mg chromium/kg of medium. Trivalent chromium is less toxic than the hexavalent form. The main signs of toxicity are inhibition of growth and the inhibition of various metabolic processes such as photosynthesis or protein synthesis. Gram-negative soil bacteria are generally more sensitive to hexavalent chromium (1-12 mg/kg) than the gram-positive types. Toxicity to trivalent chromium is not observed at similar levels. The toxicity of low levels of hexavalent chromium (1 mg/kg) indicates that soil microbial transformation, such as nitrification, may be affected. Chromium should not be introduced to municipal sewage treatment facilities. Toxicity in Plants: Chromium in high concentrations can be toxic for plants. The main feature of chromium intoxication is chlorosis, which is similar to iron deficiency. Chromium affects carbohydrate metabolism and leaf chlorophyll concentration decreases with hexavalent chromium concentration (0.01-1 mg/l). The hexavalent form appears to more toxic than the trivalent species. Biological half-life: The elimination curve for chromium, as measured by whole-body counting, has an exponential form. In rats, three different components of the curve have been identified, with half-lives of 0.5, 5.9 and 83.4 days, respectively. Water Standards: Chromium is identified as a hazardous substance in the Federal (U.S.) Water Pollution Control Act and further regulated by Clean Air Water Act Amendments (US). These regulations apply to discharge. The US Primary drinking water Maximum Contaminant Level (MCL), for chromium, is 0.05 mg/l (total Part Number: Not Available Page 15 of 18 Issue Date: 31/01/2025 Version No. 1.3 Print Date: 31/01/2025 **Tradies Choice Master Grip Lite** chromium) Since chromium compounds cannot volatilize from water, transport of chromium from water to the atmosphere is not likely, except by transport in windblown sea sprays. Most of the chromium released into water will ultimately be deposited in the sediment. A very small percentage of chromium can be present in water in both soluble and insoluble forms. Soluble chromium generally accounts for a very small percentage of the total chromium. Most of the soluble chromium is present as chromium(VI) and soluble chromium(III) complexes. In the aquatic phase, chromium(III) occurs mostly as suspended solids adsorbed onto clayish materials, organics, or iron oxide (Fe2O3) present in water. Soluble forms and suspended chromium can undergo intramedia transport. Chromium(VI) in water will eventually be reduced to chromium(III) by organic matter in the water. The reduction of chromium(VI) and the oxidation of chromium(III) in water has been investigated. The reduction of chromium(VI) by S-2 or Fe+2 ions under anaerobic conditions was fast, and the reduction half-life ranged from instantaneous to a few days. However, the reduction of chromium(VI) by organic sediments and soils was much slower and depended on the type and amount of organic material and on the redox condition of the water. The reaction was generally faster under anaerobic than aerobic conditions. The reduction half-life of chromium(VI) in water with soil and sediment ranged from 4 to 140 day. Dissolved oxygen by itself in natural waters did not cause any measurable oxidation of chromium(III) to chromium(VI) in 128 days. When chromium(III) was added to lake water, a slow oxidation of chromium(III) to chromium(VI) occurred, corresponding to an oxidation half-life of nine years. The oxidation of chromium(III) to chromium(VI) during chlorination of water was highest in the pH range of 5.5?6.0. However, the process would rarely occur during chlorination of drinking water because of the low concentrations of chromium(III) in these waters, and the presence of naturally occurring organics that may protect chromium(III) from oxidation, either by forming strong complexes with chromium(III) or by acting as a reducing agent to free available chlorine. The bioconcentration factor (BCF) for chromium(VI) in rainbow trout (Salmo gairdneri) is 1. In bottom feeder bivalves, such as the oyster (Crassostrea virginica), blue mussel (Mytilus edulis), and soft shell clam (Mya arenaria), the BCF values for chromium(III) and chromium(VI) may range from 86 to 192. The bioavailability of chromium(III) to freshwater invertebrates (Daphnia pulex) decreased with the addition of humic acid. This decrease in bioavailability was attributed to lower availability of the free form of the metal due to its complexation with humic acid. Based on this information, chromium is not expected to biomagnify in the aquatic food chain. Although higher concentrations of chromium have been reported in plants growing in high chromium-containing soils (e.g., soil near ore deposits or chromium-emitting industries and soil fertilized by sewage sludge) compared with plants growing in normal soils, most of the increased uptake in plants is retained in roots, and only a small fraction is translocated in the aboveground part of edible plants. Therefore, bioaccumulation of chromium from soil to above-ground parts of plants is unlikely. There is no indication of biomagnification of chromium along the terrestrial food chain (soil-plant-animal). The fate of chromium in soil is greatly dependent upon the speciation of chromium, which is a function of redox potential and the pH of the soil. In most soils, chromium will be present predominantly in the chromium(III) state. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. Under oxidizing conditions chromium(VI) may be present in soil as CrO4?2 and HCrO4-. In this form, chromium is relatively soluble, mobile, and toxic to living organisms. In deeper soil where anaerobic conditions exist, chromium(VI) will be reduced to chromium(III) by S-2 and Fe+2 present in soil. The reduction of chromium(VI) to chromium(III) is possible in aerobic soils that contain appropriate organic energy sources to carry out the redox reaction. The reduction of chromium(VI) to chromium(III) is facilitated by low pH. From thermodynamic considerations, chromium(VI) may exist in the aerobic zone of some natural soil. The oxidation of chromium(III) to chromium(VI) in soil is facilitated by the presence of low oxidisable organic substances, oxygen, manganese dioxide, and moisture. Organic forms of chromium(III) (e.g., humic acid complexes) are more easily oxidised than insoluble oxides. Because most chromium(III) in soil is immobilized due to adsorption and complexation with soil materials, the barrier to this oxidation process is the lack of availability of mobile chromium(III) to immobile manganese dioxide in soil surfaces. Due to this lack of availability of mobile chromium(III) to manganese dioxide surfaces, a large portion of chromium in soil will not be oxidized to chromium(VI), even in the presence of manganese dioxide and favorable pH conditions. The microbial reduction of chromium(VI) to chromium(III) has been discussed as a possible remediation technique in heavily contaminated environmental media or wastes. Factors affecting the microbial reduction of chromium(VI) to chromium(III) include biomass concentration, initial chromium(VI) concentration. temperature, pH, carbon source, oxidation-reduction potential and the presence of both oxyanions and metal cations. Although high levels of chromium(VI) are toxic to most microbes, several resistant bacterial species have been identified which could ultimately be employed in remediation strategies Chromium in soil is present mainly as insoluble oxide Cr2O3. nH2O, and is not very mobile in soil. A leachability study was conducted to study the mobility of chromium in soil. Due to differentpH values, a complicated adsorption process was observed and chromium moved only slightly in soil. Chromium was not found in the leachate from soil, possibly because it formed complexes with organic matter. These results support previous data finding that chromium is not very mobile in soil. These results are supported by leachability investigation in which chromium mobility was studied for a period of 4 years in a sandy loam. The vertical migration pattern of chromium in this soil indicated that after an initial period of mobility, chromium forms insoluble complexes and little leaching is observed. Flooding of soils and the subsequent anaerobic decomposition of plant detritus matters may increase the mobilization of chromium(III) in soils due to formation of soluble complexes. This complexation may be facilitated by a lower soil pH. A smaller percentage of total chromium in soil exists as soluble chromium(VI) and chromium(III), which are more mobile in soil. The mobility of soluble chromium in soil will depend on the sorption characteristics of the soil. The relative retention of metals by soil is in the order of lead > antimony > copper > chromium > zinc > nickel > cobalt > cadmium. The sorption of chromium to soil depends primarily on the clay content of the soil and, to a lesser extent, on Fe2O3 and the organic content of soil. Chromium that is irreversibly sorbed onto soil, for example, in the interstitial lattice of geothite, FeOOH, will not be bioavailable to plants and animals under any condition. Organic matter in soil is expected to convert soluble chromate, chromium(VI), to insoluble chromium(III) oxide, Cr2O3. Chromium in soil may be transported to the atmosphere as an aerosol. Surface runoff from soil can transport both soluble and bulk precipitate of chromium to surface water. Soluble and unadsorbed chromium(VI) and chromium(III) complexes in soil may leach into groundwater. The leachability of chromium(VI) in the soil increases as the pH of the soil increases. On the other hand, lower pH present in acid rain may facilitate leaching of acid-soluble chromium(III) and chromium(VI) compounds in soil. Chromium has a low mobility for translocation from roots to aboveground parts of plants. However, depending on the geographical areas where the plants are grown, the concentration of chromium in aerial parts of certain plants may differ by a factor of 2?3. In the atmosphere, chromium(VI) may be reduced to chromium(III) at a significant rate by vanadium (V2+, V3+, and VO2+), Fe2+, HSO3-, and As3+. Conversely, chromium(III), if present as a salt other than Cr2O3, may be oxidized to chromium(VI) in the atmosphere in the presence of at least 1% manganese oxide... However, this reaction is unlikely under most environmental conditions. The estimated atmospheric half-life for chromium(VI) reduction to chromium(III) was reported in the range of 16 hours to about 5 days DO NOT discharge into sewer or waterways # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | # Mobility in soil Part Number: Not Available Page 16 of 18 Issue Date: 31/01/2025 Print Date: 31/01/2025 Version No. 1.3 **Tradies Choice Master Grip Lite** | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 Disposal considerations** #### Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: disposal ▶ Reuse ▶ Reduction - Product / Packaging Recycling - ▶ Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** # Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7. Maritime transport in bulk according to IMO instruments 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------|---------------| | portland cement | Not Available | | graded sand | Not Available | | calcium carbonate | Not Available | | calcium formate | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |-------------------|---------------| | portland cement | Not Available | | graded sand | Not Available | | calcium carbonate | Not Available | | calcium formate | Not Available | Page 17 of 18 Part Number: Not Available Pag Version No: 1.3 Tradies Choice Master Grip Lite Issue Date: 31/01/2025 Print Date: 31/01/2025 # **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### portland cement is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### graded sand is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List #### calcium carbonate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### calcium formate is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable #### **National Inventory Status** | National Inventory | Status | |----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Australia - AIIC / Australia<br>Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (portland cement; graded sand; calcium formate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /<br>NLP | Yes | | Japan - ENCS | No (portland cement) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | No (portland cement) | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 31/01/2025 | |---------------|------------| | Initial Date | 31/01/2025 | #### Other information # Ingredients with multiple cas numbers | Name | CAS No | |-------------------|------------------------------------------------------------------------------------------------------------------------------------| | calcium carbonate | 471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 72608-12-9, 878759-26-3, 63660-97-9, 459411-10-0, 198352-33-9, 146358-95-4, 1357-85-3 | Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** Page 18 of 18 Part Number: Not Available Issue Date: 31/01/2025 Print Date: 31/01/2025 Version No. 1.3 # **Tradies Choice Master Grip Lite** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - ▶ IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances